- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Maloney, Kelly (2)
-
Barrera, Zerian D. (1)
-
Benthem, Adam (1)
-
Blanco, Rosa E. (1)
-
Boghos, Mary (1)
-
Bolish, James N. (1)
-
Brakebill, John (1)
-
Carlisle, Daren M (1)
-
Cashman, Matthew J (1)
-
Cashman, Matthew J. (1)
-
Delgado, Esteban (1)
-
Eng, Ken (1)
-
Gellis, Allen (1)
-
Hopkins, Kristina G. (1)
-
Hupp, Cliff (1)
-
Keisman, Jeni (1)
-
Khan, Amaal H. (1)
-
Kim, Sarah (1)
-
Kopp, Darin A (1)
-
Langland, Mike (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Individual size distributions (ISDs) are prominent in ecological research and may support resource managers with ecosystem-scale objectives. We use a database of individual size measurements for US stream fishes to test for direct and indirect effects of traits, flow regimes, and land use on the interspecific ISD exponent. Path analysis indicates that traits have strong, direct effects on ISD. Flow and land use effects on the exponent are largely indirectly mediated by their influences on species traits. ISD exponents increase (abundances of larger-bodied individuals increase, relative to smaller-bodied) when environments favor higher trophic levels, warmer thermal tolerances, and periodic life histories. Alternatively, ISD exponents decrease in systems that favor opportunistic life histories. Our flexible modeling framework that includes direct and indirect effects of traits, flow regimes, and land use on ISD could be expanded to incorporate additional variables that interact with flow (e.g., temperature and physical habitat) to assess of effects of multiple stressors on aquatic ecosystem functioning.more » « lessFree, publicly-accessible full text available December 19, 2026
-
Kim, Sarah; Ochoa, Kathleen; Melli, Sierra E.; Yousufzai, Fawad A. K.; Barrera, Zerian D.; Williams, Aela A.; McIntyre, Gianna; Delgado, Esteban; Bolish, James N.; Macleod, Collin M.; et al (, Scientific Reports)Abstract Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in theNpc1orNpc2genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using theNpc1nmf164mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found inNpc1-deficient mice. However, in contrast toNpc1nmf164mice,Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.more » « less
-
Noe, Gregory B.; Cashman, Matthew J.; Skalak, Katie; Gellis, Allen; Hopkins, Kristina G.; Moyer, Doug; Webber, James; Benthem, Adam; Maloney, Kelly; Brakebill, John; et al (, WIREs Water)
An official website of the United States government
